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A method for computing inviscid hypersonic 
ow over complex con�gurations using unstructuredmeshes

is presented. The unstructured grid solver uses an edge{based �nite{volume formulation. Fluxes are

computed using a 
ux vector splitting scheme that is capable of representing constant enthalpy solutions.

Second{order accuracy in smooth 
ow regions is obtained by linearly reconstructing the solution, and

stability near discontinuities is maintained by locally forcing the scheme to reduce to �rst{order accuracy.

The implementation of the algorithm to parallel computers is described. Computations using the proposed

method are presented for a sphere-cone con�guration at Mach numbers of 5.25 and 10.6, and a complex

hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data

and computations made with established structured grid methods. The use of the solver as a screening

tool for rapid aerodynamic assessment of proposed vehicles is described.

Introduction

T
HE current NASA/Industry e�ort toward next
generation launch vehicles, namely, the Reusable

Launch Vehicle (RLV) Program, has reinforced the
need for rapid computational analysis of hypersonic
re-entry vehicles. This program is being conducted
under the NASA \better, cheaper, faster" philosophy.
The initial design phase of the X-33 program required
de�nition of a vehicle that could safely 
y through all
speed regimes and was less than 18 months in dura-
tion.
During the X-33 initial design phase, most of the

aerodynamic and aeroheating data required for the
design was obtained from wind tunnel tests, where
models were rapidly tested across the subsonic to hy-
personic speed regimes. The time to develop a suitable
computational grid from an initial computer-aided de-
sign (CAD) representation is typically several weeks,
and small modi�cations to the geometry can require
extensive re{working of the computational grids. As
such, Euler and Navier-Stokes computational 
uid dy-
namics (CFD) capabilities are generally utilized at
later stages of the design process; i.e., CFD codes are
used to provide aerodynamics and heating information
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on geometrically mature con�gurations.

A rapid computational capability that provides a
timely analysis of control surface loads and design
modi�cations to the vehicle outer mold lines (OML)
is needed to parallel wind tunnel e�orts. Reason-
able estimates of the aerodynamic characteristics for a

ight vehicle are necessary in the early design stages,
with the required accuracy increasing as the design
matures. Unstructured mesh methods are ideally
suited for rapid analysis as they have the capability
to greatly reduce the time associated with grid gener-
ation on complex con�gurations as compared to tra-
ditional block structured grid methods. Unstructured
mesh systems which provide automatic mesh gener-
ation starting from a CAD de�nition and compute
inviscid 
ow solutions have already been developed.1{3

These systems can handle complex con�gurations such
as complete aircraft, and can produce reliable data
using Euler 
ow models. However, most of the de-
velopment work in the �eld of unstructured methods
has been carried out for transonic or low supersonic

ows. As these methods are extended to higher speed

ows, they typically become less robust and require
more dissipation and limiting to maintain stability.

In this paper, the application of the unstructured
mesh system FELISA4,5 to the solution of 
ows about
hypersonic re-entry vehicles is presented. The mathe-
matical formulation of the solver is presented, and the
issues unique to maintaining stable hypersonic compu-
tations are discussed. The parallel implementation of
the 
ow solution algorithm is also addressed.

Three applications are presented to illustrate the
developed capability. The �rst application compares
FELISA results with inviscid LAURA6 (a structured
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grid code) calculations and experimental data for a
sphere-cone con�guration. In the second example,
calculations are performed for a complex con�gura-
tion and the resolution of 
ow features is compared
with solutions calculated with viscous LAURA and
inviscid DPLUR.7 Lastly, the use of FELISA as a
screening tool in preliminary design phases for rapid
and accurate estimation of aerodynamic coe�cients is
demonstrated. Additional related applications have
also been presented by Prabhu.8

Unstructured Mesh Generation

The discretization of the three{dimensional compu-
tational domain into tetrahedra is carried out by the
mesh generator within the FELISA system. This re-
quires that the geometry of the domain be de�ned in
terms of an assembly of composite bi{cubic surface
patches, which intersect along lines de�ned as com-
posite cubic curves. For realistic geometries generated
using CAD systems, the data �les are su�ciently com-
plex that tools for their e�cient generation become
necessary.
The software package GridTool9 allows the user to

import geometries in a wide variety of formats, interac-
tively perform the necessary geometry manipulations
and output a FELISA compatible data �le. These ge-
ometrymanipulationsmay include geometry clean{up,
de�nition of intersection curves, re{parametrization of
body surfaces, and de�nition of the far �eld domain
boundaries. The grid density is controlled by means
of a background mesh together with a system of point,
line, and triangular sources.
The �rst step in the mesh generation is the trian-

gulation of the boundary surfaces using an advancing
front method. The domain interior is then discretized
using a constrained Delaunay algorithm which incor-
porates exact integer arithmetic to resolve situations
which are ambiguous when performed with standard

oating point arithmetic.10

The use of the mesh generator in combination with
GridTool has proven to be very reliable and easy to
use. The speed at which elements are generated is
above three million tetrahedra per hour using a sin-
gle processor high{end workstation such as an SGI{
R10000. The user{interactive part of mesh generation
process is con�ned to de�ning the geometry and de�n-
ing the grid density. It is seen that the unstructured
grid approach can give large reductions in grid gen-
eration time as compared to structured grid methods,
with typical times required for the generation of initial
grids on the order of one to two days. The generation
of multiple grids on the same or similar geometries can
also be accomplished e�ciently.

Flow Solution
The FELISA unstructured grid hypersonic 
ow

solver uses a �nite volume formulation. The ba-

sic scheme is implemented using an e�cient edge
data structure5,11,12 and several 
ux vector/di�erence
splitting options for computing the edge 
uxes. The
most successful and reliable option is the 
ux vector
splitting proposed by H�anel et al.,13 which leads to a
scheme that produces steady numerical solutions with
constant total enthalpy (when the in
ow conditions
have constant total enthalpy). Second{order accuracy
in smooth 
ow regions is obtained by linearly recon-
structing the solution following MUSCL concepts.14,15

Stability near discontinuities is maintained by locally
forcing the scheme to reduce to �rst{order accuracy
using the Local Extremum Diminishing criteria.16

Governing Equations

The three{dimensional time{dependent Euler equa-
tions written in integral form, over an arbitrary control
volume 
 with boundary @
, are expressed as

@

@t

Z



U d
+

Z
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Fk dSk = 0; (1)

where t denotes time, Sk is the k-th Cartesian compo-
nent of the outward area vector to @
, and summation
over repeated indices is assumed. The vector of un-
knownsU and the vector of inviscid 
uxes Fk are given
by

U =

0
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The quantities �; p; uk; E, andH represent the density,
pressure, k-th velocity component, total speci�c inter-
nal energy, and enthalpy, respectively, and �jk denotes
the Kronecker delta.

Spatial Discretization

For each vertex i, a �xed control volume 
i, con-
sisting of all tetrahedra sharing that vertex is de�ned.
Considering equation (1) over each 
i, and approxi-
mating the integral over each triangular facet in @
i

by the value of the integrand at the centroid times the
area we obtain

@
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k )S
f

k = 0 (3)

where Fi denotes the set of triangular facets which
form @
i; l;m and n, are the three nodes of a typical
facet f ; and Fl

k = Fk(Ul) where Ul denotes the value
of the unknown vector U at node l. By further ap-
proximating the volume integral by Ui times V i, the
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volume of 
i, we can write the following system of cou-
pled ordinary di�erential equations for the evolution of
the unknown vector at each node

dUi

dt
+

1

V i

X
f2Fi

1

3
(Fl

k +F
m
k +Fn

k )S
f

k = 0: (4)

In the above expression, the 
ux corresponding to
a neighboring node appears as many times as facets
share that node. For computational e�ciency, it is
convenient to re{arrange these contributions in such a
way that instead of summing over the facets bound-
ing 
i, summation is performed over the mesh edges
connecting i and its neighboring nodes. Thus,

dUi

dt
+

1

V i

X
e2Ei

F
l
kS

e
k = 0 (5)

where Ei denotes the set of mesh edges containing node
i, e is a typical interior edge joining nodes i and l
(Figure 1), and Sek is the k-th component of the area
vector associated to edge e, which in turn is calculated
as

Sek =
1

3

X
f2Fil

Sfk : (6)

In the above expression Fil is the subset of facets in
Fi that contain node l. Noting that the sum of the
area vectors over all edges belonging to Ei must equal
zero, expression (5) can be re{written for an interior
node as

dUi

dt
+

1

V i

X
e2Ei

(Fi
n +F

l
n)S

e = 0 (7)

where Se is the modulus of the area vector associated
to edge e, Fi

n = F
i
kŜ

e
k, and Ŝek = Sek=S

e. For interior
edges, only one area vector needs to be stored for each
edge. That is, the area vector required to form the
equation for node l can be obtained from that required
to form the equation for node i with a simple sign
change. For boundary edges however, a special treat-
ment is required to ensure that all the contributions
de�ning the volumes associated with boundary nodes
are considered. Details of this process are given in
Peraire et al.,17 and in practice it amounts to perform-
ing an additional loop over all the boundary facets.

Flux Vector Splitting

The above scheme uses a centered approximation to
the 
ux terms and is, therefore, non{dissipative. In
order to produce a practical scheme which introduces
su�cient damping to allow for strong shocks to be cap-
tured, we follow a 
ux vector splitting approach and
replace equation (7) by

i

S f

l
e

Fig. 1 Set of triangular facets used to evaluate
the area vector associated with an interior edge e

joining vertices i and l.

dUi

dt
+

1

V i

X
e2Ei

(F+
n (U

i) +F�n (U
l))Se = 0: (8)

Several choices for the numerical 
ux functions F�n
are available in the literature. We have adopted the
form proposed by H�anel et al.,13 since our experience
indicates that it provides one of the most competi-
tive options when robustness, accuracy and cost are
taken into account. In contrast, the unstructured
mesh implementation of the 
ux di�erence splitting
of Roe,18 as used in the LAURA code, was found to
be much less stable and in 
ows exhibiting strong nor-
mal shocks, it often exhibited the so{called \carbuncle
phenomenon."19

The 
ux functions used here are

F
�
n (U) = �u�n

0
BBBB@

1
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H

1
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0
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0
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0

1
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The de�nition for u�n and p� is given by

u�n =

�
�(un � c)2=4c; if junj � c

1
2
(un � junj); otherwise

(10)

and

p� =

�
p(un=c� 1)2(2� un=c); if junj � c

p(un � junj)=2un; otherwise
(11)

respectively, where un = ukŜ
e
k, and the sound speed

c is given by c2 = 
p=�. An attractive feature of
this form of 
ux vector splitting is that, whenever the
enthalpy of incoming 
ow is uniform, the converged
discrete solution also has constant enthalpy.
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Fig. 2 Dummy vertices and elements used in the
solution reconstruction process.

Reconstruction

The dissipation added using the above 
ux vector
splitting is su�cient to make the overall scheme stable
and allows for shocks of arbitrary strength to be cap-
tured over just two or three cells. However, in smooth

ow regions the scheme has poor accuracy, and re-
quires unrealistically �ne meshes to compute useful
solutions. To obtain a scheme which retains good
shock capturing properties, a geometric reconstruction
scheme is employed.
To illustrate this reconstruction procedure, consider

(Figure 2) a typical interior edge e of length �e, joining
nodes i and l, and de�ne the dummy nodes i� and l+

by extending the edge e a distance �e at either side of
nodes i and l, respectively. Let ti denote the tetra-
hedron containing node i, such that the solid angle
de�ned by its three triangular facets containing node
i includes the segment, or part of the segment, join-
ing nodes i and i�. In a similar manner, we de�ne
the tetrahedron tl such that it contains node l and in-
cludes the segment, or at least part of the segment,
joining nodes l and l+. The linear variations de�ned
by the values of (�; uk;H) at the four vertices of ti and
tl are used to determine the value of (�; uk;H) at the
dummy nodes i� and l+, respectively.
The modi�ed algorithm, using reconstruction, is

thus obtained by replacing (8) with

dUi

dt
+

1

V i

X
e2Ei

(F+
n (U

+) +F�n (U
�))Se = 0: (12)

The unknown vectors U+ and U
� are computed

by �rst considering the vector of unknowns V =
(�; u1; u2; u3;H)T and then evaluating U+ = U(V+)
and U� = U(V�), where V+ and V� are given as
follows

V
+ = Vi + 1

2
�V

V
� = Vl � 1

2
�V

�V = minmod(Vl
+

�Vl;Vl �Vi;Vi �Vi
�

);
(13)

and where the minmod function returns the argument
with smallest absolute value when all the arguments
are of the same sign and zero otherwise.

It is seen that by introducing the auxiliary vector
V, the resulting limited scheme retains the ability to
represent discrete constant enthalpy solutions. In ad-
dition, it is observed that in smooth regions of the 
ow,
the limited scheme can be interpreted as a central dif-
ference approximation (7) with higher order arti�cial
viscosity.

Special care needs to be exercised near boundaries
to appropriately choose the tetrahedron to be used in
the determination of V at the dummy nodes. In this
case a tetrahedron meeting the requirements speci�ed
above may not exist. A reasonable compromise that
we have found to work well in practice is to choose
the tetrahedron that more closely meets these require-
ments.

Time Integration

The equation set (12) is discretized in time using
a forward Euler explicit time stepping scheme with
a local time step determined from linearized stability
analysis. For problems involving strong shocks, it is
found that this form of determining the time step may
lead to limit cycle oscillations that prevent the solu-
tion from converging to machine precision. A remedy
to that situation20 consists of supplementing the lo-
cal time step calculation with an additional check that
enforces that the local monotonicity of the solution
be preserved.16 This additional check is found to be
active for a very small number of points, but it is suf-
�ceint to eliminate the limit cycle behavior.

Boundary Conditions

At the solid wall boundaries, the only contribution
to the 
ux is through the pressure term. In addition,
when the normal at the wall is well de�ned, the veloc-
ity vector is forced to be tangent to the surface. Along
trailing edges and other locations where a unique nor-
mal is not de�ned, the velocity vector is not explicity
modi�ed.

At the far �eld, boundary conditons are imposed
using the 
ux splitting procedure described above and
evaluating the appropriate 
ux function F� using far{
�eld values.

Parallel Implementation

The above described explicit algorithm is easily par-
allelized by decomposing the domain into subdomains
which are then assigned to di�erent processors and
dealt with in a concurrent manner. The necessary
communication between subdomains is accomplished
using explicit message passing. The code can use ei-
ther of the standard message passing libraries, PVM21

or MPI,22 and runs on a number of platforms rang-
ing from clusters of heterogeneous local workstations
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to mainframe parallel computers such as the IBM SP2
or the Cray T3D.
Currently, the mesh generation is carried out in a se-

rial mode. The mesh partitioning strategy is such that
every edge in the mesh belongs to a single subdomain,
whereas the nodal points on the subdomain boundaries
are shared between two or more subdomains. The
domain is decomposed using a simple coordinate bi-
section algorithm. Within each subdomain, edges are
divided into two groups. The �rst group is made up
of those edges which have at least one node that re-
quires communication (i.e., a node belonging to more
than one subdomain). The second group is made up of
the remaining edges. Typically, a loop over the edges
in the �rst group is performed �rst. The values ac-
cummulated at the boundary nodes are then broadcast
to the neigboring subdomains. The interior edges are
considered next, and then the information from the
neigboring subdomains is received. This strategy al-
lows for a considerable amount of communication and
computation to take place concurrently, thus minimiz-
ing latencies. The parallel e�ciency of the code using
16 nodes is higher than 95% for typical computations
of the size reported in this paper.

Results

The current e�ort will demonstrate that the FE-
LISA grid generation system and hypersonic Euler
solver, FELISA HYP, give reasonable and consistent
predictions of aerodynamic performance and can be
used e�ectively in rapid analysis of complex con�gu-
rations. Predictions with FELISA HYP for a sphere-
cone con�guration and a preliminaryRLV/X{33 lifting
body con�guration are compared with experimental
data and with calculations made using a structured
grid Navier-Stokes code, LAURA,6 and an inviscid
structured grid code, DPLUR.7 LAURA has been ver-
i�ed with Shuttle orbiter 
ight data23,24 and a wide
spectrum of con�gurations for supersonic to hyper-
sonic 
ow conditions.25 The parallel implementation
of DPLUR has allowed it to be used as an aerodynamic
screening tool for single-block con�gurations.
The FELISA HYP solver has both scalar and paral-

lel implementations; however, all FELISA calculations
presented herein were made using a single processor
of an SGI-R10000 Onyx machine, as were the LAURA
computations for the cone cases. The LAURA compu-
tations on the RLV/X-33 lifting body were performed
on the NAS Cray C-90. All DPLUR calculations were
made on the IBM SP2 at LaRC.
The strategy used in developing a block structured

grid to perform a series of analyses on a given con-
�guration using LAURA is to provide for the 'best'
grid that will be used. This means that each grid has
spacing for viscous computations, and su�cient resolu-
tion of the geometry to accurately capture the heating
rates on the windside surfaces. LAURA utilizes an

algorithm that adjusts the outer domain and spacing
normal to the body to capture the shape of the outer
bow shock for each case to be run, thus minimizing the
number of complete grids that must be generated to
analyze a particular con�guration. For a typical grid
on an X-33 con�guration, the grid generation time is 4
weeks (6 weeks were required on the �rst grid; lessons
learned made subsequent discretizations faster.).

The 
exibility of the unstructured mesh approach
o�ers a signi�cant time advantage over the block struc-
tured grid approach, and thus allows for a di�erent
strategy in developing meshes for series of computa-
tions. The initial geometry de�nition for a FELISA
mesh is done once for all grids, and produces a mesh
that has the surface geometry adequately resolved, and
an initial attempt at resolving the 
ow features of the
�rst case. For typical X{33 geometries, this takes
about 4 days; the �rst X{33 con�guration that was
analyzed required about 1.5 weeks. There are several
strategies available for generation and adaption to a
particular case. The 'brute force' method was used in
the examples in this paper; coarse mesh solutions are
calculated, and the spacing distribution is revised with
signi�cant user intervention to capture the bow shock
properly. Mesh enrichment, movement, and remeshing
strategies have been developed for FELISA, but the
results have not been satisfactory when the dominant

ow feature is a strong bow shock. Solution adaptive
strategies are under development which will allow for
automatic resolution of the bow shock simultaneous
with resolution of the 
ow features surrounding the
body.

Spherically Blunted Cone

The �rst case presented is for 
ow over a 15� half{
angle spherically blunted cone with a nose radius of 1.0
inch. FELISA solutions were calculated at freestream
Mach numbers of 5.25 and 10.6 and angles of attack
of 0� and 15�. These results are compared to the ex-
perimental results of Cleary26 and computations made
using DPLUR and LAURA in an inviscid mode.

For the 0� cases, the FELISA solution was calcu-
lated on a mesh of 267,459 points. The LAURA
solution was calculated on a 61 � 33 axisymmetric
structured grid. For the FELISA computations at
M1 = 5:25 and � = 15�, an initial mesh of 186,276
points and a �ne mesh of 693,910 points were used.
For the M1 = 10:6 and � = 15� case, the solution
was calculated on a medium mesh of 328,527 points
and the �ne mesh used for the M1 = 5:25, � = 15�

case. The LAURA and DPLUR calculations utilized a
61� 19� 33 grid, with the outer boundary adapted at
each Mach number to the bow shock using the LAURA
shock alignment routine.

The theoretical value of Cp at the stagnation point
is 1.81 for M1 = 5:25, and 1.83 forM1 = 10:6. All of
the solutions presented here slightly underpredict the
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Case Stag Cp Stag Cp

M1 = 5:25 M1 = 10:6
Theory 1.81 1.83

LAURA, 0� 1.81 1.82
FELISA, 0� 1.80 1.82
LAURA, 15� 1.80 1.82
DPLUR, 15� 1.79 |

FELISA, 15�initial 1.78 |
FELISA, 15�medium | 1.82
FELISA, 15��ne 1.80 1.81

Table 1 Stagnation Cpvalues for 15� half{angle
spherically blunted cone.

stagnation point Cp, with the LAURA results at 0� be-
ing closest to the theoretical value. Table 1 shows the
stagnation values of Cp for all of the cases presented
here.
The comparisons of centerline pressure coe�cients,

shown in Figure 3, indicate good agreement for the
computational cases. For the M1 = 5:25 solutions,
the largest di�erences in the Cp values for the �ne
grid FELISA solutions as compared to the LAURA
solutions are on the order of 2%, and are in the re-
compression region of the windside of the cone at 15�

angle of attack. In most regions, the di�erence is less
than .5%. The solution on the initial mesh of 186K
nodes gives a poorer comparison, due to inadequate
resolution of the bow shock. Experience has shown
that a mesh density of approximately 15 points is
needed between the bowshock and the body to resolve
the shock adequately; the initial FELISA mesh had
approximately 10 points, while the �ne mesh had ap-
proximately 18. The comparisons for the M1 = 10:6
cases show di�erences between the LAURA and the
FELISA solutions on the order of 6% in the recom-
pression region, 2% elsewhere. The agreement (of all
of the computations) with experiment is reasonable
except for the 15� cases on the windside.

RLV/X{33 Lifting Body Con�guration

A preliminary Lockheed-Martin RLV/X-33 lifting
body con�guration is used in the remainder of the
comparisons. The full vehicle is shown in Figure 4.
It has twin vertical tails and �ns; the engines are
modeled by the box-shaped structure on the base.
This con�guration was evaluated during Phase I of
the RLV/X-33 program with wind tunnel testing and
computational analysis to predict aerodynamics and
aeroheating for the full trajectory. The LAURA and
DPLUR computations and the Mach 4.5 FELISA com-
putations presented in this paper were run as part of
the Aerothermodynamics Branch's analysis program.
The Mach 9.8 FELISA solution on this con�guration
was run speci�cally to compare with the LAURA and
DPLUR results; the grid density was similar to a
computation made with FELISA on an earlier con-
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FELISA, 15° fine

a)M1 = 5:25
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C
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b)M1 = 10:6

Fig. 3 Cpdistributions for a 15
� half{angle spheri-

cally blunted cone. Experiment, LAURA, DPLUR,
and FELISA HYP.

�guration.

RLV/X-33 Mach 9.8 Computations

In this example, FELISA results are compared with
viscous LAURA and inviscid DPLUR calculations for
M1 = 9:8 and � = 40�. The base 
ow of the vehicle
was not calculated.

The computational grids for the FELISA and
LAURA calculations are shown in Figure 5. The un-
structured FELISA grid has 82K surface nodes, 716K
volume nodes, and 4.2M tetrahedra. The LAURA vis-
cous solution was computed on a 24-block structured
grid system with a total of 1.85M grid points. The
forebody portion of the grid was 65� 65� 65, and the
12-block aftsection (including wings and vertical tail)
was 101 � 248 � 65. The unusual shape of the exit
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Fig. 4 Preliminary con�guration of the Lockheed-
Martin RLV/X-33.

plane was generated using the shock alignment rou-
tine within the LAURA code, and was copied for the
FELISA case. The DPLUR data is for the forebody
only, and used a single block, 51� 65� 41 grid. When
compared to the structured computational grid, the
FELISA mesh provided comparable resolution of the
windside, much better resolution of the leeside of the
vehicle, and somewhat coarser resolution on the wing.
Also, the structured grid was a viscous grid and, as
such, provided for �ner normal spacing of grid points,
and coarser axial spacing.

Figure 6 shows the centerline pressure coe�cients
for the LAURA, DPLUR, and FELISA calculations.
Overall, the agreement is very good, with small local
di�erences in the recompression region of the forebody.
StagnationCp for all three cases is 1.81; the theoretical
value is 1.83.

A comparsion of the windside Cp contours is given
in Figure 7. The 
ow features of the FELISA solution
compare very well to both the viscous LAURA and the

a) FELISA mesh

b) LAURA mesh

Fig. 5 Computational grids for M1 = 9:8,
� = 40� calculations on preliminary Lockheed-
Martin RLV/X-33 con�guration.

inviscid DPLUR. The slight di�erences on the wing
surface (Figure 7(a)) are attributable to grid density
di�erences. The LAURA grid is more resolved in the
wing region than this FELISA grid, due to the origi-
nal purpose for each of the calculations. The LAURA
calculation was made to resolve the heating levels on
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Fig. 6 Cpdistribution on the symmetry plane of
preliminary Lockheed{Martin RLV/X-33 con�gu-
ration, M1 = 9:8 and � = 40�.

the vehicle, while the purpose of the FELISA solutions
was to generate �rst cut aerodynamic design data.

The Cp distribution on the leeside of the vehicle is
shown in an expanded view (compared to the scale of
Figure 6) in Figure 8. A signi�cant variation between
viscous LAURA and FELISA in the recompression re-
gion is observed, due to the 
ow separation predicted
by the viscous solution. The DPLUR inviscid and the
FELISA compare very well up to an axial location
of about 250. The FELISA grid is much denser in
this region, and predicts a higher compression. The
agreement with LAURA further down the body is
completely fortuitous; the actual 
ow �elds are very
di�erent due to the 
ow separation on the leeside.

Comparisons of pressure coe�cient contours on the
leeside of the RLV/X-33 are shown in Figure 9. The
di�erence in the cross
ow shock structure between the
FELISA inviscid and LAURA viscous solutions (Fig-
ure 9(a)) is clearly evident. Comparison between the
FELISA and DPLUR inviscid solutions (Figure 9(b))
shows similar cross
ow shock structures. The DPLUR
shock is slightly more smeared, and located further o�
the centerline of the body. This is due to the �ner
spacing of the FELISA mesh. In practice, structured
grids are generated such that the leeside 
ow is not as
resolved as the windside, so as to focus computational
resources on the regions that have the most impact on
the heating and aerodynamic forces on the body.

Figure 10 shows pressure coe�cient contours at a
cut near the middle of the fuselage, comparing the
FELISA inviscid results to the LAURA viscous and
DPLUR inviscid. The LAURA solution clearly shows
the separation as 
ow comes around the body. The in-
viscid FELISA and DPLUR solutions remain attached,
and generate a cross
ow shock to turn the 
ow down-
stream. The outer shock for the FELISA is more
smeared; this is due to the the grid not being well

a) FELISA and viscous LAURA solutions

b) FELISA and DPLUR solutions

Fig. 7 Cpcontours on the windside of prelim-
inary Lockheed{Martin RLV/X-33 con�guration,
M1 = 9:8 and � = 40�.
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Fig. 8 Leeside Cpdistribution on the symmetry
plane of preliminary Lockheed{Martin RLV/X-33
con�guration, M1 = 9:8 and � = 40�.

aligned with the shock and a coarse FELISA grid in
the leeside bow shock region. Both of the structured
grid solutions used LAURA's shock alignment routine
to capture the outer bow shock more e�ciently, and
it would be very di�cult to generate an unstructured
grid that provides as much alignment with the shock.
Improvements to the adaptive capabilities of FELISA
are needed to better align the bow shock, particularly
on the windside of the vehicle.
Figure 11 shows pressure coe�cient contours for FE-

LISA and LAURA viscous at a cut near the rear of
the fuselage including the wing and vertical tail. The
di�erences here are primarily in the region of the cross-

ow shock and the outer bow shock. Qualitatively, the
features compare very well, particularly in the 
ow
around the wing.

X-33 Aerodynamic Comparisons, Mach 4.5

The �nal example is a calculation of the aerody-
namic forces over the complete X-33 con�guration.
The computations were performed at a Mach number
of 4.5 in air, and at angles of attack of 0� and 10�. The
experimental data shown for comparison is from a test
performed in the LaRC Unitary Plan Wind Tunnel fa-
cility,27 and the data is courtesy of NASA LaRC. The
test was run at M1 = 4:50 and Re=ft of 2� 106 on a
0:0105 scale model with transition arti�cially induced.
The shaded surface and symmetry plane meshes

used in the aerodynamic calculations are shown in Fig-
ure 12. The FELISA grid used had a surface mesh of
55K points, and a volumemesh containing 439K points
and 2.56M tetrahedra. The same mesh was used for
calculations at both angles of attack. The mesh ex-
tended over the entire body, including the base region.
The LAURA calculation used the same initial grid as
the M1 = 9:8 calculations and was adapted to form
the grid shown in Figure 12(b) for the � = 10� case
and a similar grid for the � = 0� case. The base re-

a) FELISA and viscous LAURA solutions

b) FELISA and DPLUR solutions

Fig. 9 Cpcontours on the leeside of prelimi-
nary Lockheed{Martin RLV/X-33 con�guration,
M1 = 9:8 and � = 40�.
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a) FELISA and viscous LAURA solutions

b) FELISA and DPLUR solutions

Fig. 10 Cpcontours on forebody cut of prelim-
inary Lockheed{Martin RLV/X-33 con�guration,
M1 = 9:8 and � = 40�.

Fig. 11 Cpcontours on rear fuselage cut of the pre-
liminary Lockheed{Martin RLV/X-33 con�gura-
tion,M1 = 9:8 and � = 40�, FELISA and LAURA
viscous solutions.

gion was not modeled in the LAURA computations.
A plot of the normal force and moment coe�cients

vs. angle of attack is shown in Figure 13. The agree-
ment of the FELISA normal force and moment co-
e�cients with the experimental data and the viscous
LAURA calculations is very good. For the axial force
coe�cients, the agreement is slightly degraded. This
is expected, since the FELISA calculations do not in-
clude viscous e�ects.

Conclusions

A new algorithm for calculating inviscid hypersonic

ow over re{entry vehicles using unstructured meshes
has been developed. The 
ow solver uses a �nite{
volume formulation with an edge based data structure.
Fluxes are calculated with the H�anel 
ux vector split-
ting formulation, and a MUSCL gradient reconstruc-
tion is implemented for higher{order accuracy. These
algorithms for 
ux formulation provide more robust
simulation capabilities for hypersonic 
ows as com-
pared to earlier implementations in FELISA. The new
algorithm has been implemented on both scalar and
parallel architectures.
The FELISA HYP 
ow solver has been shown to

be accurate in predicting both integrated aerodynamic
characteristics and resolving 
ow features for complex
re{entry vehicles. Examples of 
ow solutions over an
RLV/X-33 con�guration were presented. Comparisons
of these solutions to experimental data and computa-
tional solutions from established structured grid 
ow
solvers provide the �rst, strong evidence for the valid-
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ity of the FELISA HYP algorithm in the code valida-
tion process. The use of unstructured meshes permits
faster mesh generation than traditional structured grid
methods for complex con�gurations using state-of-the-
art technology and expertise.
The algorithm presented here enables rapid screen-

ing for aerodynamics and pressure loads on space
transportation vehicles in a time frame of two to four-
teen days, including grid generation. The methodol-
ogy presented in this work has been successfully ap-
plied to preliminary phases of both the X-33 and X-34
programs. The examples presented here are a small
sampling of the work performed in the Aerothermo-
dynamics Branch over the past two years. While the
method described herein has been shown to be accu-
rate and e�ective, there are several improvements in
the grid generation and solution adaption areas that
would further enhance the e�ciency of the method.

a) FELISA mesh, � = 0� and 10�

Fig. 12 Body and symmetry plane grid for aero-
dynamic calculations on preliminary Lockheed{
Martin RLV/X-33 con�guration, M1 = 4:5.

b) LAURA grid, � = 10� case

Fig. 12 Concluded.
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Fig. 13 Aerodynamic force coe�cients for the
Lockheed-Martin X-33 B1001A con�guration at
M1 = 4:5, � = 0� and 10�.

These algorithm enhancements are the subject of on-
going research.
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